Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Adaptive UWB/PDR fusion positioning algorithm based on error prediction
ZHANG Jianming, SHI Yuanhao, XU Zhengyi, WEI Jianming
Journal of Computer Applications    2020, 40 (6): 1755-1762.   DOI: 10.11772/j.issn.1001-9081.2019101830
Abstract508)      PDF (1311KB)(645)       Save
An Ultra WideBand (UWB)/ Pedestrian Dead Reckoning (PDR) fusion positioning algorithm with adaptive coefficient adjustment based on UWB error prediction was proposed in order to improve the UWB performance and reduce the PDR accumulative errors in the indoor Non-Line-Of-Sight (NLOS) positioning scenes and solve the UWB performance degradation caused by environmental factors. On the basis of the creative proposal of predicting the UWB positioning errors in complex environment by Support Vector Machine (SVM) regression model, UWB/PDR fusion positioning performance was improved by adding adaptive adjusted parameters to the conventional Extended Kalman Filter (EKF) algorithm. The experimental results show that the proposed algorithm can effectively predict the current UWB positioning errors in the complex UWB environment, and increase the accuracy by adaptively adjusting the fusion parameters, which makes the positioning error reduced by 18.2% in general areas and reduced by 48.7% in the areas with poor UWB accuracy compared with those of the conventional EKF algorithm, so as to decrease the environmental impact on the UWB performance. In complex scenes of both Line-Of-Sight (LOS) and NLOS including UWB, the positioning error per 100 meters is reduced from meter scale to decimeter scale, which reduces the PDR errors in NLOS scenes.
Reference | Related Articles | Metrics
Bayesian network-based floor localization algorithm
ZHANG Bang, ZHU Jinxin, XU Zhengyi, LIU Pan, WEI Jianming
Journal of Computer Applications    2019, 39 (8): 2468-2474.   DOI: 10.11772/j.issn.1001-9081.2019010119
Abstract501)      PDF (1037KB)(266)       Save
In the process of indoor positioning and navigation, a Bayesian network-based floor localization algorithm was proposed for the problem of large error of floor localization when only the pedestrian height displacement considered. Firstly, Extended Kalman Filter (EKF) was adopted to calculate the vertical displacement of the pedestrian by fusing inertial sensor data and barometer data. Then, the acceleration integral features after error compensation was used to detect the corner when the pedestrian went upstairs or downstairs. Finally, Bayesian network was introduced to locate the pedestrian on the most likely floor based on the fusion of walking height and corner information. Experimental results show that, compared with the floor localization algorithm based on height displacement, the proposed algorithm has improved the accuracy of floor localization by 6.81%; and compared with the detection algorithm based on platform, the proposed algorithm has improved the accuracy of floor localization by 14.51%. In addition, the proposed algorithm achieves the accuracy of floor localization by 99.36% in the total 1247 times floor changing experiments.
Reference | Related Articles | Metrics
Pedestrian heading particle filter correction method with indoor environment constraints
LIU Pan, ZHANG Bang, HUANG Chao, YANG Weijun, XU Zhengyi
Journal of Computer Applications    2018, 38 (12): 3360-3366.   DOI: 10.11772/j.issn.1001-9081.2018040883
Abstract444)      PDF (1179KB)(519)       Save
In the traditional indoor pedestrian positioning algorithm based on dead reckoning and Kalman filtering, there is a problem of cumulative error in the heading angle, which makes the positional error continue to accumulate continuously. To solve this problem, a pedestrian heading particle filter algorithm with indoor environment constraints was proposed to correct direction error. Firstly, the indoor map information was abstracted into a structure represented by line segments, and the map data was dynamically integrated into the mechanism of particle compensation and weight allocation. Then, the heading self-correction mechanism was constructed through the correlation map data and the sample to be calibrated. Finally, the distance weighting mechanism was constructed through correlation map data and particle placement. In addition, the particle filter model was simplified, and heading was used as the only state variable to optimize. And while improving the positioning accuracy, the dimension of state vector was reduced, thereby the complexity of data analysis and processing was reduced. Through the integration of indoor environmental information, the proposed algorithm can effectively suppress the continuous accumulation of directional errors. The experimental results show that, compared with the traditional Kalman filter algorithm, the proposed algorithm can significantly improve the pedestrian positioning accuracy and stability. In the two-dimensional walking experiment with a distance of 435 m, the heading angle error is reduced from 15.3° to 0.9°, and the absolute error at the end position is reduced from 5.50 m to 0.87 m.
Reference | Related Articles | Metrics